A method for retrieving the spatial distribution of trace gases using measurements of three ground-based MAX-DOAS instruments

Three MAX-DOAS instruments in Vienna

Site Address

BOKU Universität für Bodenkultur Peter-Jordan-Gasse 82 1190 Vienna, Austria

VETMED Veterinärmedizinische Universität Veterinärplatz 1 1210 Vienna, Austria

Arsenal A1 Avenel 24 1030 Vienna, Austria

Altitude: 267 m asl 171 m a.s.l. 333 m asl

Elevation angle of "horizontal" plane: 1° 3° 0°

Spectrum: Visible, UV Visible, Visible, Visible

Spectrum of evaluated vertical profiles: Visible, UV Visible UV

Spatial retrieval method for trace gases

2D spatial distribution of trace gases estimated using:

- multiple MAX-DOAS instruments (within range of optical lengths)
- Measured slant column densities (SCD) (see Fig. 1):
 - For various azimuthal directions
 - Within approximately the same vertical plane
 - Intersecting in 2D space

Retrieval method:

- For each "measurement line" the slant column density S is:

 \[S = \frac{1}{d} \int I(x) \, dx \] (1)

 depending on known effective optical path d and the unknown number density $I(x)$ along the segment d.

- The finite number of measurements and intersections divide each measurement line in segments of known discrete lengths d_i such that:

 \[d = \sum d_i \] (2)

- Eq. (1) is formulated using the sparse matrix D for segment lengths as:

 \[S = D \cdot I \] (3)

- To account for different number densities in the respective mean altitude of each segment "correction factors” F are introduced:

 \[I = F \cdot S \] (4)

 The correction factor allows to translate the results to:

 - reference altitude (where $F=1$)
 - Back to each segments’ mean altitude.

Vertical NO$_2$ concentration profiles

Vertical NO$_2$ number density relative to 16th-value [%]

- 2019-06-03 12:00 UTC
- 2019-06-03 12:00 UTC

Retrieved spatial distribution of NO$_2$

Comparison: MAX-DOAS vs. In-situ

Different correction factors have been used as well as data obtained at different spectral ranges:

a) Using SCD and vertical profiles in UV (BOKU @Arsenal) in visible @VetMed (see the measurement lines for this case in Fig. 3). Interpolation between profile data points using a spline of order 5. Comparison with In-situ in Niederösterreich. 19

b) Using the very first approach of vertical profiles in comparison: linear (see black line in Fig. 2 right). Comparison with In-situ in Vienna, Austria. 19

c) As a) but using linear interpolation between profile data points. Comparison with In-situ in green. 19

d) Using SCD and vertical profiles in visible range, except the profile @Arsenal (UV as well not valid as yet). Comparison with In-situ in dark-blue. 19

e) As d) but replacing the value of vertical profiles at 100 m altitude with the In-situ value at St. Stephen’s Square. Comparison with In-situ in brown. 19

Summary & Outlook

- A method for estimating the 2D spatial distribution of trace gas concentrations above an urban environment was developed using DOAS from three MAX-DOAS instruments in Vienna, Austria.
- Vertical profiles of the concentration are used as correction factors to deal with different altitudes of measurement.
- Estimated values close to ground are systematically underestimated.
- Problem: Higher, localized emissions near-in-situ measurement stations and low mixing in deep street canyons.
- Unskewed: impact of terrain in Vienna in combination with the prevailing wind condition.
- In the future: Car-DOAS measurements will be used additionally for comparison with the estimated spatial distribution and the data is expected to improve the vertical profiles close to ground.

Acknowledgements

- Financial support was provided by the Austrian Science Fund (FWF): I 2296
- Field work: Theodor Hegg, Johann Kempe (Institut für Physik, Universität Innsbruck)
- Financial support was provided by the Austrian Science Fund (FWF) under grants P 23004-N15, P 27171-N20, and S 1052-N20 to M.J. Schmalwieser, M. Richter, and M. Schmalwieser. A. Tänzer and M. Vrekoussis.
- The authors wish to thank “Austrian Meteorological and Geophysical Institute” and “European Centre for Medium-Range Weather Forecasts” for making the data available.
- *Email: michael.revesz@boku.ac.at
- http://www.doas-vindobona.at/

Michael Revesz1,*, Stefan F. Schreier1, Philipp Weihs3, Tim Bösch2, Kezia Lange2, Andreas Richter2, Mihalis Vrekoussis3, Alois W. Schmalwieser3

1Institute of Meteorology and Climatology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
2Institute of Environmental Physics, University of Bremen, Germany
3Unit of Molecular Physiology and Biophysics, University of Veterinary Medicine, Vienna, Austria

Motivation

- Ground-based MAX-DOAS spectra can be used for the retrieval of tropospheric vertical column densities, horizontal path-averaged mixing ratios/concentrations and vertical profiles of different trace gases.
- Within the VINDOBONA project, three 2D MAX-DOAS instruments have been installed at three different locations in Vienna.
- Measurements in various directions covering the central area of the city of Vienna open a new way to determine the spatial distribution of trace gases above this area.
- In this study, (E) a method was developed to retrieve the spatial distribution of trace gases using MAX-DOAS measurements, (D) show the new method of the NO$_2$ concentrations and (A) assess a couple of different settings to improve results retrieved.

Vertical NO$_2$ measurements of NO$_2$ VODs via

- BOREAS – MAX-DOAS profile retrieval algorithm
- 2019-06-03 12:00 UTC
- 2019-06-03 12:00 UTC

Fig. 2: Vertical profiles of NO$_2$ concentration for the three sites and evaluated spectra (VINDOBA), with a direction Vienna city center.

- Left: number density for each case measured in situ value at St. Stephen’s Square in Vienna, Right: Correction factor for the retrieval method calculated as number density for each case normalized by each respective value in Fig. 3, and a simple linear profile "approximation" (initial method).

Fig. 3: Results: Estimation of a 2D spatial distribution of NO$_2$ over Vienna, Austria on a clear day (Fig. 03 June 2019 (Vind)). Using SCD and vertical profiles in UV (BOKU @Arsenal) in visible @VetMed and linear interpolation between profile data points. For comparison, the measured data of in-situ stations is shown as circles. Left: Vertical profile, Right: 12:00 UTC.

Fig. 4: Sentinel-2P vertical column densities of NO$_2$, over Vienna, Austria for qualitative comparison with estimated MAX-DOAS results in Fig. 3. The locations of the three MAX-DOAS instruments are shown as red dots.

Fig. 5: Estimated NO$_2$ concentration (μg m$^{-3}$) depending on reference altitude different correction factors or data from different spectral optical ranges.

- Estimation vertical profile values, using spline or linear, has no significant effect.
- Due to hilly terrain in the north west using data for UV spectral range (shorter effective optical path) is preferred.
- No mixing of data for different spectral ranges.
- Using In-situ measurement data from ground profile value for lowest altitude improves estimated values close to the ground.